Marine Ecology I: Phytoplankton and Primary production

Osvaldo Ulloa
Universidad de Concepción, Chile
oulloa@udec.cl

International Summer School, Cargèse, 2009; Marine Ecology I
Phytoplankton, biogeochemistry & climate I

• Uptake of CO_2 through photosynthesis

• Calcification

\[
Ca^{+2} + CO_3^{2-} \rightleftharpoons CaCO_3
\]

- Can affect the infrared radiative properties of the atmosphere

International Summer School, Cargèse, 2009; Marine Ecology I
Phytoplankton, biogeochemistry & climate II

- Production of dimethyl sulphide (DMS)

 - Source of cloud condensation nuclei, which change the reflectance (albedo) of clouds

 - Can affect the shortwave radiative properties of the atmosphere

International Summer School, Cargèse, 2009; Marine Ecology I
Phytoplankton, biogeochemistry & climate III

• Modulation of the absorption of shortwave (visible) radiation in the surface ocean

 – Can affect absorption and the transport of heat in the ocean

International Summer School, Cargèse, 2009; Marine Ecology I
Biological (organic) pump

\[\text{CO}_2 + \text{H}_2\text{O} + \text{Nutrients} + \text{Light} \quad \overset{\text{Phytoplankton}}{\leftrightarrow} \quad \text{Organic matter} + \text{O}_2 \]
Diatoms

– Eukaryotes
– Major primary producers
– Commonly form chains or colonies
– Have external “skeletons” made of silica
– Can sink fast

International Summer School, Cargèse, 2009; Marine Ecology I
Dinoflagellates

– Eukaryotes
– Usually exist as single cells
– Have two flagella
 i.e., they can swim weakly
– Alkenones are used for reconstruction
 of paleo-temperatures
– Red tides producers
Coccolithophorids

– Eukaryotes
– Have two flagella but only at certain life stages
– Spherical organisms covered with plates of calcium carbonate
– Blooms increase water albedo
– Fossils are used to make chalk

\[\text{Ca}^{+2} + \text{CO}_3^{2-} \rightleftharpoons \text{CaCO}_3 \]
Phytoflagellates

– Eukaryotes
– Single cells or can form large (up to 1 cm) hollow, gelatinous colonies
– Producers of DMS
– Decaying remains can cause foam on the sea shore
Cyanobacteria I

Trichodesmium

- Exist as single filaments, trichomes (10’-100’s of cells), or colonies (visible to the naked eye; 1-10 mm in length)
- **Nitrogen fixers** (i.e., contribute to new production)
- Have gas vacuoles
- Tropical and subtropical distribution
Cyanobacteria II
Marine N\textsubscript{2}-fixing unicellular cyanobacteria

- Small unicellular prokaryotes
- Spherical
- Size: 2-20 µm in diameter
- Different species (e.g. *Cyanothece, Myxosarcina, Gloeoethece, Synechocystis*)
- Important N\textsubscript{2}-fixers (contribute to new production)

International Summer School, Cargèse, 2009; Marine Ecology I
Cyanobacteria III

Synochococcus

- Small unicellular prokaryotes (ca. 1 μm)
- Contain phycobilisomes
- Orange-yellow fluorescence under blue light
- Some motile strains
- Global distribution, throughout euphotic zone
- Up to 10^4 - 10^5 cells mL$^{-1}$

Discovered in the late 70’s (Waterbury et al., *Nature* 772: 293, 1979).

International Summer School, Cargèse, 2009; Marine Ecology I
Cyanobacteria IV

Prochlorococcus

- Small unicellular prokaryote
- Size: 0.5 to 0.7 µm in diameter
- Main photosynthetic pigments are divinyl chlorophyll a (Chl \text{a}_2) and divinyl chlorophyll b (Chl \text{b}_2)
- Most abundant phytoplankton (50° N-50° S)
- Genomic size ca. 2 Mbp. Smallest of all known oxyphotobacteria

Discovered in the 80’s (Chisholm et al., Nature 344: 340, 1988).

International Summer School, Cargèse, 2009; Marine Ecology I
Picophytoeukaryotes

(< 2 - 3 µm)

- Ubiquitous and significant members of the plankton
- Phylogenetically very diverse
- New clades very different from known organisms
- Abundance: 10^3-10^4 cells mL$^{-1}$

International Summer School, Cargèse, 2009; Marine Ecology I
Flow Cytometry II

Typical cytograms from marine samples

International Summer School, Cargèse, 2009; Marine Ecology I
Flow Cytometry III

International Summer School, Cargèse, 2009; Marine Ecology I
Chlorophyll-\(a\): an index of phytoplankton biomass, \(B\)

Main photosynthetic pigment
Present in all - and only in - phytoplankton

Dimensions: \(M \, L^{-3}\)

Units: \(mg \, m^{-3}\) (or \(\mu g \, L^{-1}\))

Methods: Colorimetric
Fluorometric (\textit{in vivo}, on extracts)
HPLC (High Performance Liquid Chromatography)
Remote sensing
Phytoplankton absorption spectrum

Chlorophyll-a

International Summer School, Cargèse, 2009; Marine Ecology I
Para ver esta película, debe disponer de QuickTime™ y de un descompresor.

International Summer School, Cargèse, 2009; Marine Ecology I
Para ver esta película, debe disponer de QuickTime™ y de un descompresor.

International Summer School, Cargèse, 2009; Marine Ecology I
Primary production, P

*$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Organic matter} + \text{O}_2$

Carbon fixation (photosynthesis) per unit volume per unit time

Dimensions: $\text{M L}^{-3} \text{T}^{-1}$
Units: $\text{mg C m}^{-3} \text{h}^{-1}$

Daily water-column primary production:

$$P_{T,Z} = \iiint P(z,t) \, dz \, dt$$

International Summer School, Cargèse, 2009; Marine Ecology I
Phytoplankton blooms: Sverdrup’s model

Fig. 4. Schematic diagram showing critical depth and compensation depth

International Summer School, Cargèse, 2009; Marine Ecology I
Which are the factors controlling primary production?

<table>
<thead>
<tr>
<th>External</th>
<th>Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Light</td>
<td>• Pigments</td>
</tr>
<tr>
<td>• Nutrients (macro & micro)</td>
<td>• Nutrient pool</td>
</tr>
<tr>
<td>• Grazing by zooplankton</td>
<td>• Enzyme concentration</td>
</tr>
<tr>
<td>• Temperature</td>
<td>• Cell size</td>
</tr>
<tr>
<td>• ...</td>
<td>• ...</td>
</tr>
</tbody>
</table>

• Most of the variability in the photosynthetic rate of phytoplankton can be attributed to variations in light

• After light, most of the variability in primary production measurements can be explained in terms of variability in biomass
A useful approach

a) To establish a quantitative description of the relationship between biomass-normalised primary production and light

a) To study the effect of other variables (e.g., nutrients, T, cell size, etc.) on the photosynthetic parameters

\[P(I) = P^B(I) \times B \]

$P^B = \text{Biomass-normalised primary production}$
$I = \text{Irradiance (Photosynthetically Active Radiation 400–700 nm)}$
$B = \text{Biomass}$
Photosynthesis-light curve

\[P^B = f(I; \alpha^B, P^B_m) + R^B \]

International Summer School, Cargèse, 2009; Marine Ecology I
Photosynthetic parameters

\[P^B_m = \text{assimilation number} \]

Information about the dark reaction of photosynthesis, i.e., enzymatic reactions

\[\alpha^B = \text{Initial slope} \]

\[\alpha^B = a^* \Phi \]

\[a^* = \text{Specific absorption coefficient} \]

\[\Phi = \text{Quantum yield (mol C / mol quanta)} \]

Related to the efficiency of photosynthesis. Information about the photochemical reaction

International Summer School, Cargèse, 2009; Marine Ecology I
Para ver esta película, debe disponer de QuickTime™ y de un descompresor.

International Summer School, Cargèse, 2009; Marine Ecology I
Wavelength dependence of photosynthesis at low light intensities

International Summer School, Cargèse, 2009; Marine Ecology I
Spectral composition of light changes with depth

International Summer School, Cargèse, 2009; Marine Ecology I
Phytoplankton biomass

International Summer School, Cargèse, 2009; Marine Ecology I
Global primary production

Global NPP is ~105 Pg C yr\(^{-1}\) : 48.5 Pg C yr\(^{-1}\) (46%) in the oceans and 56.4 Pg C yr\(^{-1}\) (54%) on land

Global primary production II

Para ver esta película, debe disponer de QuickTime™ y de un descompresor.

NPP global annual = 104×10^{15} g C

International Summer School, Cargèse, 2009; Marine Ecology I
Global primary production III

International Summer School, Cargèse, 2009; Marine Ecology I